Spatial Interpolation of High - Frequency Monitoring Data

نویسندگان

  • Michael L. Stein
  • M. L. STEIN
چکیده

Climate modelers generally require meteorological information on regular grids, but monitoring stations are, in practice, sited irregularly. Thus, there is a need to produce public data records that interpolate available data to a high density grid, which can then be used to generate meteorological maps at a broad range of spatial and temporal scales. In addition to point predictions, quantifications of uncertainty are also needed. One way to accomplish this is to provide multiple simulations of the relevant meteorological quantities conditional on the observed data taking into account the various uncertainties in predicting a space-time process at locations with no monitoring data. Using a high-quality dataset of minute-by-minute measurements of atmospheric pressure in north-central Oklahoma, this work describes a statistical approach to carrying out these conditional simulations. Based on observations at 11 stations, conditional simulations were produced at two other sites with monitoring stations. The resulting point predictions are very accurate and the multiple simulations produce well-calibrated prediction uncertainties for temporal changes in atmospheric pressure but are substantially overconservative for the uncertainties in the predictions of (undifferenced) pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes

Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...

متن کامل

Spatial Analysis and Source Identification of Particulate Matter (PM10) in Yazd City

Introduction: The aim of this study was to spatial analysis of PM10 concentrations in the ambient air of Yazd in two seasons, and the zoning by using Kriging interpolation method. Finally, different factors affecting the concentrations of PM10 are marked and standards have been investigated Material and methods: The measurement of PM10 particulates was performed by the monitoring device HAZ-...

متن کامل

Mapping Spatial Variability of Soil Salinity Using Remote Sensing Data and Geostatistical Analysis: A Case of Shadegan, Khuzestan

Extended abstract 1- Introduction Soil salinity is one of the most important desertification parameters in many parts of the world. Thus, preparing soil salinity maps in macro scales is necessary. Water and soil salinity as one of the contributing parameters in desertification, cause soil and vegetation degradation. Soil salinization represents many negative effects on the earth systems such ...

متن کامل

Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data

‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...

متن کامل

Spatio-Temporal Analysis of Drought Severity Using Drought Indices and Deterministic and Geostatistical Methods (Case Study: Zayandehroud River Basin)

     Drought monitoring is a fundamental component of drought risk management. It is normally performed using various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables. In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation of spatially referenced data and the prediction of v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009